Low-rank matrix recovery via regularized nuclear norm minimization

نویسندگان

چکیده

In this paper, we theoretically investigate the low-rank matrix recovery problem in context of unconstrained regularized nuclear norm minimization (RNNM) framework. Our theoretical findings show that, RNNM method is able to provide a robust any X (not necessary be exactly low-rank) from its few noisy measurements b=A(X)+n with bounded constraint ‖n‖2≤ϵ, provided that tk-order restricted isometry constant (RIC) A satisfies certain related t>0. Specifically, obtained condition case t>4/3 found same sharp established previously by Cai and Zhang [10] guarantee exact rank-k via constrained method. More importantly, best our knowledge, are first establish RIC based coefficient estimate null space property 0<t≤1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Rank Matrix Recovery via Efficient Schatten p-Norm Minimization

As an emerging machine learning and information retrieval technique, the matrix completion has been successfully applied to solve many scientific applications, such as collaborative prediction in information retrieval, video completion in computer vision, etc. The matrix completion is to recover a low-rank matrix with a fraction of its entries arbitrarily corrupted. Instead of solving the popul...

متن کامل

Factor Matrix Nuclear Norm Minimization for Low-Rank Tensor Completion

Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix rank minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix rank mini...

متن کامل

Necessary and Sufficient Null Space Condition for Nuclear Norm Minimization in Low-Rank Matrix Recovery

Low-rank matrix recovery has found many applications in science and engineering such as machine learning, signal processing, collaborative filtering, system identification, and Euclidean embedding. But the low-rank matrix recovery problem is an NP hard problem and thus challenging. A commonly used heuristic approach is the nuclear norm minimization. In [12,14,15], the authors established the ne...

متن کامل

Exact Low-rank Matrix Recovery via Nonconvex Mp-Minimization

The low-rank matrix recovery (LMR) arises in many fields such as signal and image processing, statistics, computer vision, system identification and control, and it is NP-hard. It is known that under some restricted isometry property (RIP) conditions we can obtain the exact low-rank matrix solution by solving its convex relaxation, the nuclear norm minimization. In this paper, we consider the n...

متن کامل

Low-rank Matrix Recovery via Iteratively Reweighted Least Squares Minimization

We present and analyze an efficient implementation of an iteratively reweighted least squares algorithm for recovering a matrix from a small number of linear measurements. The algorithm is designed for the simultaneous promotion of both a minimal nuclear norm and an approximatively low-rank solution. Under the assumption that the linear measurements fulfill a suitable generalization of the null...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2021

ISSN: ['1096-603X', '1063-5203']

DOI: https://doi.org/10.1016/j.acha.2021.03.001